9 Using Coordinates to Prove Theorems about Circles

Representing figures as algebraic equations can help you prove geometric theorems.

-1

EXAMPLE B The equation of circle P is $(x - 1)^2 + y^2 = 2$. The equation of line RS is y = x + 1. Prove that \overrightarrow{RS} is tangent to circle P. Then prove that the tangent line is perpendicular to the radius of the circle.

Prove that \overrightarrow{RS} is tangent to circle *P*.

A tangent line intersects a circle at exactly one point. So, if \overrightarrow{RS} is tangent to circle P, then there will be only one solution to the system containing the equations of the line and the circle.

$$\begin{cases} (x-1)^2 + y^2 = 2\\ y = x + 1 \end{cases}$$

1

Substitute x + 1 for y in the equation of the circle and solve for x.

$$(x - 1)^{2} + y^{2} = 2$$
$$(x - 1)^{2} + (x + 1)^{2} = 2$$
$$x^{2} - 2x + 1 + x^{2} + 2x + 1 - 2 = 0$$
$$2x^{2} = 0$$
$$x^{2} = 0$$
$$x = 0$$

Substitute 0 for x in the linear equation.

y = x + 1 = 0 + 1 = 1

Duplicating this page is prohibited by law. © 2015 Triumph Learning, LLC

There is only one real solution, (0, 1), so \overrightarrow{RS} intersects circle P at this one point only. So, \overrightarrow{RS} must be tangent to circle P.

Prove that radius \overline{PT} is perpendicular to \overline{RS} .

Perpendicular lines have slopes that are opposite reciprocals of each other.

The equation for \overrightarrow{RS} is y = x + 1, so, $m_{\overline{PS}} = 1.$

Find the slope of radius PT.

2

TRY

Point T was found to be (0, 1). Point P is the center of circle P. The equation of circle P is $(x - 1)^2 + y^2 = 2$, so the center, (*h*, *k*), of the circle is (1, 0).

$$m_{\overline{PT}} = \frac{1-0}{0-1} = \frac{1}{-1} = -$$

 $m_{\overline{RS}} \cdot m_{\overline{PT}} = 1 \cdot -1 = -1$

The slopes of \overrightarrow{RS} and \overrightarrow{PT} are opposite reciprocals, so $\overrightarrow{PT} \perp \overrightarrow{RS}$.

Practice

Use circle O to prove that all radii of a circle have the same length.

1. Find the length of radius OA.

- **3.** Will all radii of the circle have the same length? Explain how you know.
- 2. Find the lengths of other radii.
 OB = _____ = ____
 OC = _____ = ____
 OD = _____ = ____

Prove or disprove.

- 4. The line y = x 1 is tangent to the circle $x^2 + (y 3)^2 = 8$ at the point (2, 1). Prove the tangent line is perpendicular to the radius at the point of tangency.
- 5. Prove or disprove that the point $(1, \sqrt{3})$ lies on the circle centered at the origin and containing the point (3, 0).

REMEMBER Perpendicular lines have slopes that are opposite reciprocals.

6. Line segments *PR* and *PT* are secants drawn from point *P*. Prove that the product of one secant segment and its external segment is equal to the product of the other secant segment and its external segment.

.....

Prove or disprove.

7. **PROVE** Prove that the diameter of circle / is twice the length of its radius.

Use the distance formula (or another formula) to find each length. Show your work.

JUSTIFY In circle P, chord \overline{CD} intersects chord \overline{AB} at point E. 8.

Show that because the diameter intersects the chord and is perpendicular to the chord, it bisects the chord. Justify each step by completing the two-column proof.

Statements	Reasons
1. \overline{AB} and \overline{CD} intersect at point <i>E</i> .	Given
2. \overline{CD} is a diameter of circle P.	\overline{CD} is a chord that passes through
3. $\overline{AB} \perp \overline{CD}$	AB is a horizontal segment and
4. AE = EB	AE = 12 = EB =
5. \overline{CD} bisects \overline{AB} .	\overline{CD} divides \overline{AB} into two segments of equal lengths. Definition of